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ABSTRACT

We investigate the use of convolutional neural networks
(CNNs) for unsupervised image segmentation. As in the
case of supervised image segmentation, the proposed CNN
assigns labels to pixels that denote the cluster to which the
pixel belongs. In the unsupervised scenario, however, no
training images or ground truth labels of pixels are given
beforehand. Therefore, once when a target image is input,
we jointly optimize the pixel labels together with feature rep-
resentations while their parameters are updated by gradient
descent. In the proposed approach, we alternately iterate
label prediction and network parameter learning to meet the
following criteria: (a) pixels of similar features are desired to
be assigned the same label, (b) spatially continuous pixels are
desired to be assigned the same label, and (c) the number of
unique labels is desired to be large. Although these criteria
are incompatible, the proposed approach finds a plausible
solution of label assignment that balances well the above cri-
teria, which demonstrates good performance on a benchmark
dataset of image segmentation.

Index Terms— Convolutional neural networks, Unsuper-
vised learning, Feature clustering

1. INTRODUCTION
Image segmentation has attracted attention in computer vision
research for decades. The applications of image segmentation
include object detection, texture recognition, and image com-
pression. In the supervised scenario, in which a set of pairs
of images and pixel-level semantic labels (such as “sky” or
“bicycle”) is used for training, the goal is to train a system
that classifies the labels of known categories for image pix-
els. On the other hand, in the unsupervised scenario, image
segmentation is used to predict more general labels, such as
“foreground” and “background”. The latter case is more chal-
lenging than the former, and furthermore, it is extremely hard
to segment an image into an arbitrary number (≥ 2) of plausi-
ble regions. The present study considers a problem in which
an image is partitioned into an arbitrary number of salient or
meaningful regions without any previous knowledge.

Once the pixel-level feature representation is obtained,
image segments can be obtained by clustering the feature vec-
tors. However, the design of feature representation remains a

challenge. The desired feature representation highly depends
on the content of the target image. For instance, if the goal
is to detect zebras as a foreground, the feature representation
should be reactive to black-white vertical stripes. Therefore,
the pixel-level features should be descriptive of colors and
textures of a local region surrounding each pixel. Recently,
convolutional neural networks (CNNs) have been success-
fully applied to semantic image segmentation (in supervised
learning scenarios) for autonomous driving or augmented re-
ality games, for example. CNNs are not often used in fully
unsupervised scenarios; however, they have great potential for
extracting detailed features from image pixels, which is nec-
essary for unsupervised image segmentation. Motivated by
the high feature descriptiveness of CNNs, we present a joint
learning approach that predicts, for an arbitrary image input,
unknown cluster labels and learns optimal CNN parameters
for the image pixel clustering. Then, we extract a group of
image pixels in each cluster as a segment.

Now, we describe the problem formulation that we solve
for image segmentation. Let {xn ∈ R

p}Nn=1 be a set of p-
dimensional feature vectors of image pixels, where N denotes
the number of pixels in an input image. We assign cluster la-
bels {cn ∈ Z}Nn=1 to all of the pixels by cn = f(xn), where
f : Rp → Z denotes a mapping function. Here, f can, for
instance, be the assignment function that returns the ID of the
cluster centroid closest to xn among k centroids, which are
obtained by, e.g., k-means clustering. For the case in which
f and the feature representation {xn} are fixed, {cn} are ob-
tained by the above equation. On the other hand, if f and
{xn} are trainable, whereas {cn} are given (fixed), then the
above equation can be regarded as a standard supervised clas-
sification problem. The parameters for f and {xn} in this
case can be optimized by gradient descent if f and the feature
extraction functions for {xn} are differentiable. However, in
the present study, we predict unknown {cn} while training
the parameters of f and {xn} in a fully unsupervised manner.
To put this into practice, we alternatively solve the following
two sub-problems: prediction of the optimal {cn} with fixed
f and {xn} and training of the parameters of f and {xn}
with fixed {cn}.

Let us now discuss the characteristics of the cluster la-
bels {cn} necessary for good image segmentation. Similar to
previous studies on unsupervised image segmentation [1, 2],



we assume that a good image segmentation solution matches
well a solution that a human would provide. When a human
is asked to segment an image, he/she would most likely cre-
ate segments, each of which corresponds to the whole or a
(salient) part of a single object instance. An object instance
tends to contain large regions of similar colors or texture pat-
terns. Therefore, grouping spatially continuous pixels that
have similar colors or texture patterns into the same cluster
is a reasonable strategy for image segmentation. On the other
hand, in order to separate segments from different object in-
stances, it is better to assign different cluster labels to neigh-
boring pixels of dissimilar patterns. To facilitate the cluster
separation, we also consider a strategy in which a large num-
ber of unique cluster labels is desired. In conclusion, we in-
troduce the following three criteria for the prediction of {cn}:

(a) Pixels of similar features are desired to be assigned the same label.

(b) Spatially continuous pixels are desired to be assigned the same label.

(c) The number of unique cluster labels is desired to be large.

Note that these criteria are incompatible so that they are never
satisfied perfectly. However, through the gradual optimization
that considers all three criteria simultaneously, the proposed
system finds a plausible solution of {cn} that balance well
these criteria. In Section 2, we describe the proposed iterative
approach to predict {cn} that satisfy the above criteria.

2. METHOD
2.1. Constraint on feature similarity
Let us consider the first criterion, which assigns the same la-
bel to pixels of similar features. The proposed solution is
to apply a linear classifier that classifies the features of each
pixel into q classes. In the present paper, we assume the input
to be an RGB image I = {vn ∈ R

3}Nn=1, where each pixel
value is normalized to [0, 1].

We compute a p-dimensional feature map {xn} from
{vn} through M convolutional components, each of which
consists of a 2D convolution, ReLU activation function, and a
batch normalization function, where a batch corresponds to N
pixels of a single input image. Here, we set p filters of region
size 3× 3 for all of the M components. Note that these com-
ponents for feature extraction are able to be replaced by alter-
natives such as fully convolutional networks (FCN) [3]. Next,
we obtain a response map {yn = Wcxn + bc}Nn=1 by apply-
ing a linear classifier, where Wc ∈ R

q×p and bc ∈ R
q . We

then normalize the response map to {y′
n} such that {y′

n}Nn=1

has zero mean and unit variance. The motivation behind the
normalization process is described in Sec. 2.3. Finally, we
obtain the cluster label cn for each pixel by selecting the di-
mension that has the maximum value in y′

n. We herein refer
to this classification rule as argmax classification. Intuitively,
the above-mentioned processing corresponds to the clustering
of feature vectors into q clusters. The ith cluster of the final
responses {y′

n} can be written as:

Ci = {y′
n ∈ R

q | y′n,i ≥ y′n,j , ∀j}, (1)

where y′n,i denotes the ith element of y′
n. This is equivalent

to assigning each pixel to the closest point among the q rep-
resentative points, which are placed at infinite distance on the
respective axis in the q-dimensional space. Note that Ci can
be ∅, and therefore the number of unique cluster labels is ar-
bitrary from 1 to q.

2.2. Constraint on spatial continuity
The basic concept of image pixel clustering is to group simi-
lar pixels into clusters (as shown in Sec. 2.1). In image seg-
mentation, however, it is preferable for the clusters of im-
age pixels to be spatially continuous. Here, we add an ad-
ditional constraint that favors cluster labels that are the same
as those of neighboring pixels. We first extract K fine su-
perpixels {Sk}Kk=1 (with a large K) from the input image
I = {vn}Nn=1, where Sk denotes a set of the indices of pix-
els that belong to the kth superpixel. Then, we force all of
the pixels in each superpixel to have the same cluster label.
More specifically, letting |cn|n∈Sk

be the number of pixels
in Sk that belong to the cnth cluster, we select the most fre-
quent cluster label cmax, where |cmax|n∈Sk

≥ |cn|n∈Sk
for

all cn ∈ {1, . . . , q}. The cluster labels are then replaced by
cmax for n ∈ Sk. In the present paper, we use SLIC [4] with
K = 10, 000 for the superpixel extraction.

2.3. Constraint on the number of unique cluster labels
In the unsupervised image segmentation, there is no clue as to
how many segments should be generated in an image. There-
fore, the number of unique cluster labels should be adap-
tive to the image content. As described in Sec. 2.1, the pro-
posed strategy is to classify pixels into an arbitrary number
q′(1 ≤ q′ ≤ q) of clusters, whereas q is the possibly max-
imum value of q′. A large q′ indicates oversegmentation,
whereas a small q′ indicates undersegmentation. The afore-
mentioned criteria (a) and (b) only facilitate the grouping of
pixels, which could lead to a naive solution that q′ = 1. To
prevent this kind of undersegmentation failure, we introduce
the third criterion (c), which is the preference for a large q′.

Our solution is to insert the intra-axis normalization pro-
cess for the response map {yn} before assigning cluster la-
bels via argmax classification. Here, we use batch normaliza-
tion [5] (where a batch corresponds to N pixels of a single
input image), which is described as follows:

y′n,i =
yn,i − μi√

σ2
i + ε

, (2)

where μi and σi denote the mean and standard deviation of
{yn,i}, respectively. Note that ε is a constant that is added
to the variance for numerical stability. This operation (also
known as whitening) converts the original responses {yn} to
{y′

n}, where each axis has zero mean and unit variance. Then
each y′n,i(i = 1, . . . , q) has an even chance to be the max-
imum value of y′

n across axes. Even though this operation
does not guarantee that every cluster index i(i = 1, . . . , q)



Algorithm 1: Unsupervised image segmentation
Input: I = {vn ∈ R

3}Nn=1 // RGB image
Output: L = {cn ∈ Z}Nn=1 // Label image
{Wm, bm}Mm=1 ← Init() // Initialize
{Wc, bc} ← Init() // Initialize
{Sk}Kk=1 ← GetSuperPixels( {vn}Nn=1 )
for t = 1 to T do
{xn}Nn=1 ← GetFeats( {vn}Nn=1, {Wm, bm}Mm=1 )
{yn}Nn=1 ← {Wcxn + bc }Nn=1

{y′
n}Nn=1 ← Norm( {yn}Nn=1 ) // Batch norm.

{cn}Nn=1 ← { arg maxy′
n }Nn=1 // Assign labels

for k = 1 to K do
cmax ← arg max |cn|n∈Sk

c′n ← cmax for n ∈ Sk
L ← SoftmaxLoss( {y′

n, c
′
n}Nn=1 )

{Wm, bm}Mm=1, {Wc, bc} ← Update( L )

achieves the maximum value for any n(n = 1, . . . , N), be-
cause of this operation, many cluster indices will achieve the
maximum value for any n(n = 1, . . . , N). As a consequence,
this intra-axis normalization process gives the proposed sys-
tem a preference for a large q′.

2.4. Learning network by backpropagation
In this section, we describe how to self-train the network for
unsupervised image segmentation. Once a target image is in-
put, we alternatively solve the following two sub-problems:
prediction of cluster labels with fixed network parameters and
training of network parameters with the (fixed) predicted clus-
ter labels. The former corresponds to the forward process of
a network followed by the superpixel refinement described
in Sec. 2.2. The latter corresponds to the backward process
of a network based on gradient descent. As with the case of
supervised learning, we calculate the softmax loss (i.e., the
cross-entropy loss) between the network responses {y′

n} and
the refined cluster labels {c′n}. Then, we backpropagate the
error signals to update the parameters of convolutional fil-
ters {Wm, bm}Mm=1 as well as the parameters of the classi-
fier {Wc, bc}. In the present paper, we use stochastic gra-
dient descent with momentum for updating the parameters.
The parameters are initialized with Xavier initialization [6],
which samples values from the uniform distribution normal-
ized according to the input and output layer size. We iter-
ate this forward-backward process T times to obtain the fi-
nal prediction of cluster labels {cn}. Algorithm 1 shows the
pseudocode for the proposed unsupervised image segmenta-
tion algorithm. Figure 1 illustrates the proposed algorithm for
training the proposed CNN network.

As shown in Fig. 1, the proposed CNN network is com-
posed of basic functions. The most characteristic part of the
proposed CNN is the existence of the batch normalization
layer between the final convolution layer and the argmax clas-
sification layer. Unlike the supervised learning scenario, in

Fig. 1. Illustration of the proposed algorithm for training the
proposed CNN network.

Fig. 3. F-measure per image for various methods.

which the target labels are fixed, the batch normalization of
responses over axes is necessary for obtaining reasonable la-
bels {cn} (see Sec. 2.3). Moreover, in contrast to supervised
learning, there are multiple solutions of {cn} with different
network parameters that achieve near zero loss. The value of
the learning rate takes control over the balance between pa-
rameter updates and clustering, which leads to different solu-
tions of {cn}. We empirically found that setting the learning
rate to 0.1 (with momentum 0.9) yielded the best results.

3. RESULTS
We evaluated the proposed method using 200 test images
from the Berkeley Segmentation Dataset and Benchmark
(BSDS500) [7, 8]. The test images in this dataset are pro-
vided with more than 1,000 hand-labeled segmentations. We
trained the proposed CNN model with T = 500 iterations
for each image, altering the number of convolutional compo-
nents M as 1, 2, . . . , 5. We fixed p = q = 100 for all of the
experiments. For comparison, we chose to use k-means clus-
tering and the graph-based segmentation method (GS) [9].
For the k-means clustering, we used the concatenation of
RGB values in a α×α window for each pixel representation,
where α = 1, 3, 5, 7. We extracted connected components as
segments from each cluster generated by k-means clustering
and the proposed method.

Figure 3 shows the F-measure per image, which is the har-



Fig. 2. Example results of the proposed method. Different segments are shown in different colors.

(a) IoU = 0.5 (b) IoU = 0.7

Fig. 4. Precision-recall curves.

monic mean of precision and recall, for various methods. We
calculated the intersection over union (IoU) of each estimated
segment and ground truth segments and regarded the IoU as
correct if the maximum IoU is larger than 0.5. The num-
bers following the method names in Fig. 3 represent (α, k)
for k-means clustering, the similarity threshold β for merg-
ing neighboring segments with GS, and M for the proposed
method. We chose the best results from k = 2, 3, . . . , 20 for
k-means clustering and β = 100, 500, 1,000, 1,500, 2,000
for GS, which are all outperformed by the proposed method.
We also show the precision-recall curves with an IoU thresh-
old 0.5 and 0.7 in Fig. 4. Here, segments were arranged in
order of decreasing size. The best average precision scores
for each method with IoU = (0.5, 0.7) are (0.049, 0.0129)
with k-means clustering, (0.1161, 0.0449) with GS, and
(0.1394, 0.0578) with the proposed method, which demon-
strates the effectiveness of the proposed method. Figure 2
shows typical example results obtained using the proposed
method. Many meaningful segments with various colors
and textures (such as a tiger and a giraffe) are successfully
detected by the proposed method.

4. RELATED WORK
Semantic image segmentation based on CNN has been gain-
ing attention in the literature [10, 11, 3, 12]. Existing work
often uses object detectors [13, 14, 15] or user inputs [16, 17]
to determine parameters for segmentation. Since pixel-level
annotations for image segmentation are difficult to obtain,
weakly supervised learning approaches using object bounding
boxes [18, 19] or image-level class labels [20, 21, 22, 23] for
training are widely used. However, to the best of our knowl-

edge, no studies have considered CNN for image segmenta-
tion in a fully unsupervised manner.

Unsupervised deep learning approaches have focused
mainly on learning high-level feature representations using
generative models [24, 25, 26]. The motivation behind these
studies is closely related to the conjecture in neuroscience
that there exist neurons that represent specific semantic con-
cepts. Here, we are more interested in the application of deep
learning to image segmentation, and thus emphasize the im-
portance of high-level features extracted with convolutional
layers. Deep CNN filters are known to be effective for texture
recognition and segmentation [27, 28].

Note that the convolution filters used in the proposed
method are trainable in the standard backpropagation algo-
rithm, although there are no ground truth labels. The present
study is therefore related to recent research on deep embedded
clustering (DEC) [29]. The DEC algorithm iteratively refines
clusters by minimizing the KL divergence loss between soft-
assigned data points with an auxiliary target distribution,
whereas the proposed method simply minimizes the softmax
loss based on the estimated clusters. Similar approaches,
such as maximum margin clustering [30] and discriminative
clustering [31, 32], have been proposed for semi-supervised
learning frameworks, whereas the proposed method is fo-
cused on the fully unsupervised image segmentation task.

5. CONCLUSION
We presented a novel CNN architecture and its self-training
process that enables image segmentation in an unsupervised
manner. Using the backpropagation of the softmax loss to
the normalized responses of convolutional layers, the pro-
posed CNN jointly assigned cluster labels to image pixels
and updated the convolutional filters to achieve better sepa-
ration of clusters. We also introduced a superpixel refinement
process to achieve the spatial continuity constraint for the
estimated segments. Experimental results on the BSDS500
benchmark dataset demonstrated the effectiveness of the pro-
posed method. An interesting direction for future research
is to investigate constraints other than superpixel refinement,
e.g., using edge density for the segmentation priors.
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